skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Qadeer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance. We are providing statistical inference of different methodologies, comparison between methodologies, and providing our inference of different techniques that are used in other industries for maintenance that can be utilized for ADS. This paper presents a summary, main result, challenges, and opportunities of these approaches and supports new work for the maintenance of ADS. 
    more » « less
  2. The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions. A solution is proposed to mitigate these attacks by utilizing machine authentication codes or authenticated encryption with pre-shared keys between the communicating parties. Various tradeoffs, such as communication overhead encryption time and J1939 protocol compliance, are presented while implementing the mitigation strategy. One of our key findings is that the data flowing through RP1210-based diagnostic systems are vulnerable to MitM attacks launched from the host diagnostics computer. Security models should include controls to detect and mitigate these data flows. An example of a cryptographic security control to mitigate the risk of an MitM attack was implemented and demonstrated by using the SAE J1939 DM18 message. This approach, however, utilizes over twice the bandwidth as normal communications. Sensitive data should utilize such a security control. 
    more » « less